MathVine - Pre-Algebra		Name	
Adding Fractions		Date	Period
Add. 1) $\frac{2}{6} + \frac{1}{6}$	2) $\frac{3}{6} + \frac{2}{6}$	3) $\frac{4}{6} + \frac{3}{6}$	4) $\frac{2}{10} + \frac{4}{9}$
5) $\frac{4}{5} + \frac{3}{4}$	6) $\frac{2}{3} + \frac{1}{5}$	7) $\frac{2}{3} + \frac{2}{3}$	8) $\frac{7}{9} + \frac{8}{9}$
9) $\frac{1}{9} + \frac{7}{9}$	10) $\frac{3}{9} + \frac{5}{10}$	11) $\frac{5}{9} + \frac{1}{4}$	12) $\frac{3}{4} + \frac{4}{6}$
13) $\frac{6}{9} + \frac{6}{8}$	14) $\frac{7}{9} + \frac{4}{10}$	15) $\frac{3}{6} + \frac{5}{6}$	16) $\frac{1}{6} + \frac{2}{6}$

9)
$$\frac{1}{9} + \frac{7}{9}$$
 10) $\frac{3}{9} + \frac{5}{10}$ 11) $\frac{5}{9} + \frac{1}{4}$ 12) $\frac{3}{4} + \frac{4}{6}$
Answer: $\frac{8}{9}$ Answer: $\frac{5}{6}$ Answer: $\frac{29}{36}$ Answer: $\frac{11}{12}$

MathVine - Pre-Algebra

Name___

Adding Fractions

Date_____ Period_____

Solution Steps

1)
$$\frac{2}{6} + \frac{1}{6}$$

Since these fractions have the same denominator, we can just add the numerators $\frac{2}{\overline{6}} + \frac{1}{\overline{6}} = \frac{3}{\overline{6}}$ 2) $\frac{3}{6} + \frac{2}{6}$

Since these fractions have the same denominator, we can just add the numerators $\frac{3}{6} + \frac{2}{6} = \frac{5}{6}$ 3) $\frac{4}{6} + \frac{3}{6}$

Since these fractions have the same denominator, we can just add the numerators $\frac{4}{6} + \frac{3}{6} = \frac{7}{6}$ Because $\frac{7}{6}$ is an

improper fraction (the numerator is greater than the denominator), we need to convert it to a mixed number $\frac{1}{6} = 1\frac{1}{6}$ 4) $\frac{2}{10} + \frac{4}{9}$

Since these fractions have different denominators, we need to find the least common multiple of the denominators The least common multiple of 9 and 10 is 90, so we need to multiply to make each of the denominators = 90 2918 $\overline{\begin{array}{c}10\\4\end{array}} * \overline{9} = \overline{90}\\40$ $\overline{9} * \overline{10} = \overline{90}$ Since these fractions have the same denominator, we can just add the $\begin{array}{c} \text{numerators} \\ 18 \quad 40 \quad 58 \end{array}$ $\overline{\underline{90}} + \overline{90} = \overline{90}$ $\overline{90}$ can be reduced, since 2 is a factor of both 58 and 90: $\overline{90} \div \overline{2} = \overline{45}$ The fraction is now in lowest terms

 $\overline{6}$ can be reduced,

since 3 is a factor of

both 3 and 6: $\frac{3}{6} \div \frac{3}{3} = \frac{1}{2}$

The fraction is now in lowest terms

5) $\frac{4}{5} + \frac{3}{4}$

Since these fractions have different denominators, we need to find the least common multiple of the denominators The least common multiple of 4 and 5 is 20, so we need to multiply to make each of the denominators = 204 4 16 $\overline{\frac{5}{3}} * \overline{\frac{4}{5}} = \overline{\frac{20}{15}}$ $\overline{4} * \overline{5} = \overline{20}$ Since these fractions have the same denominator, we can just add the numerators 16 15 31 $\overline{20} + \overline{20} = \overline{20}$ Because $\overline{20}$ is an improper fraction (the numerator is greater than the denominator), we need to convert it to a mixed number

 $\overline{20} = 1\overline{20}$

6) $\frac{2}{3} + \frac{1}{5}$ Since these fractions have different denominators, we need to find the least common multiple of the denominators The least common multiple of 3 and 5 is 15, so we need to multiply to make each of the denominators = 152 5 10 $\overline{\frac{3}{1}} * \overline{\frac{5}{3}} = \overline{\frac{15}{3}}$ $\overline{5} * \overline{3} = \overline{15}$ Since these fractions have the same denominator. we can just add the $\begin{array}{ccc} \mathsf{numerators} \\ 10 & 3 & 13 \end{array}$ $\overline{15} + \overline{15} = \overline{15}$

7) $\frac{2}{3} + \frac{2}{3}$

Since these fractions have the same denominator, we can just add the numerators $\overline{3} + \overline{3} = \overline{3}$ Because $\overline{3}$ is an

improper fraction (the numerator is greater than the denominator), we need to convert it to a mixed number 3

$$=1\frac{1}{3}$$

8) $\frac{7}{9} + \frac{8}{9}$ Since these fractions have the same denominator, we can just add the numerators $\overline{9} + \overline{9} = \overline{9}$ 15 $\overline{\mathbf{q}}$ can be reduced, since 3 is a factor of both 15 and 9: $\overline{9} \div \overline{3} = \overline{3}$ The fraction is now in lowest terms Because $\overline{3}$ is an improper fraction (the numerator is greater than the denominator), we need to convert it to a mixed number $\overline{3} = 1\overline{3}$

9)
$$\frac{1}{9} + \frac{7}{9}$$

Since these fractions have the same denominator, we can just add the numerators $\frac{1}{9} + \frac{7}{9} = \frac{8}{9}$

13) $\frac{6}{9} + \frac{6}{8}$ Since these fractions have different denominators, we need to find the least common 10) $\frac{3}{9} + \frac{5}{10}$

Since these fractions have different denominators, we need to find the least common multiple of the denominators The least common multiple of 9 and 10 is 90, so we need to multiply to make each of the denominators = 90 $\overline{9}_{5}^{*} \overline{10}_{9}^{} = \overline{90}_{45}^{}$ $\overline{10} * \overline{9} = \overline{90}$ Since these fractions have the same denominator. we can just add the numerators 30 45 75 $\overline{\frac{90}{75}} + \overline{90} = \overline{90}$ $\overline{90}$ can be reduced, since 15 is a factor of both 75 and 90: $\overline{90} \div \overline{15} = \overline{6}$ The fraction is now in lowest terms

14) $\frac{7}{9} + \frac{4}{10}$ Since these fractions have different denominators, we need to find the least common 11) $\frac{5}{9} + \frac{1}{4}$

Since these fractions have different denominators, we need to find the least common multiple of the denominators The least common multiple of 4 and 9 is 36, so we need to multiply to make each of the denominators = 36 5 4 20 $\overline{9} * \overline{4} = \overline{36}$ 1 9 9 9 $\overline{4} * \overline{9} = \overline{36}$ Since these fractions have the same denominator. we can just add the numerators 20 9 29 $\overline{36} + \overline{36} = \overline{36}$

15) $\frac{3}{6} + \frac{5}{6}$

Since these

numerators

 $\overline{c} + \overline{c} = \overline{c}$

fractions have the

same denominator.

we can just add the

12) $\frac{3}{4} + \frac{4}{6}$ Since these fractions have different denominators, we need to find the least common multiple of the denominators The least common multiple of 4 and 6 is 12, so we need to multiply to make each of the denominators = 12 $\overline{\frac{4}{4}} * \overline{\frac{3}{2}} = \overline{\frac{12}{8}}$ $\overline{6} * \overline{2} = \overline{12}$ Since these fractions have the same denominator. we can just add the numerators 17 $\overline{12} + \overline{12} = \overline{12} \\ 17$ Because $\overline{12}$ is an improper fraction (the numerator is greater than the denominator), we need to convert it to a mixed number $\overline{12} = 1\overline{12}$ 16) $\frac{1}{6} + \frac{2}{6}$ Since these fractions have the same denominator. we can just add the numerators $1 \quad 2 \quad 3$ $\overline{c} + \overline{c} = \overline{c}$

multiple of the denominators The least common multiple of 8 and 9 is 72, so we need to multiply to make each of the denominators = 72 6 8 48 $\overline{\frac{9}{6}} * \overline{\frac{8}{9}} = \overline{\frac{72}{54}}$ $\overline{8} * \overline{9} = \overline{72}$ Since these fractions have the same denominator, we can just add the numerators 48 54 102 $\overline{\frac{72}{102}} + \overline{72} = \overline{72}$ $\overline{72}$ can be reduced, since 6 is a factor of both 102and 72: 102 6 17 $\overline{72} \div \overline{6} = \overline{12}$ The fraction is now in lowest terms Because $\overline{12}$ is an improper fraction (the numerator is greater than the denominator), we need to convert it to a mixed number $\overline{12} = 1 \overline{12}$

multiple of the denominators The least common multiple of 9 and 10 is 90, so we need to multiply to make each of the denominators = 90 $7 \quad 10 \quad 70$ $\overline{9}_{4}^{*} \overline{10}_{9}^{-} = \overline{90}_{36}^{-}$ $\overline{10} * \overline{9} = \overline{90}$ Since these fractions have the same denominator, we can just add the numerators 70 36 106 $\overline{\frac{90}{106}} + \overline{90} = \overline{90}$ $\overline{90}$ can be reduced, since 2 is a factor of both 106and $90:106^{\circ}2$ 53 $\overline{90} \div \overline{2} = \overline{45}$ The fraction is now in lowest terms Because $\overline{45}$ is an improper fraction (the numerator is greater than the denominator), we need to convert it to a mixed number $\overline{45} = 1\overline{45}$

 $\frac{8}{6} \stackrel{0}{} \frac{0}{6} \frac{0}{6}$ since 2 is a factor of both 8 and 6: $\frac{8}{6} \div \frac{2}{2} = \frac{4}{3}$ The fraction is now in lowest terms Because $\frac{4}{3}$ is an improper fraction (the numerator is greater than the denominator), we need to convert it to a mixed number $\frac{4}{3} = 1\frac{1}{3}$ $\frac{9}{6}$ to $\frac{1}{6}$ can be reduced, since 3 is a factor of both 3 and 6: $\frac{3}{6} \div \frac{3}{3} = \frac{1}{2}$ The fraction is now in lowest terms