Adding Fractions

## Add.

1) $\frac{2}{6}+\frac{1}{6}$
2) $\frac{3}{6}+\frac{2}{6}$
3) $\frac{4}{6}+\frac{3}{6}$
4) $\frac{2}{10}+\frac{4}{9}$
5) $\frac{4}{5}+\frac{3}{4}$
6) $\frac{2}{3}+\frac{1}{5}$
7) $\frac{2}{3}+\frac{2}{3}$
8) $\frac{7}{9}+\frac{8}{9}$
9) $\frac{1}{9}+\frac{7}{9}$
10) $\frac{3}{9}+\frac{5}{10}$
11) $\frac{5}{9}+\frac{1}{4}$
12) $\frac{3}{4}+\frac{4}{6}$
13) $\frac{6}{9}+\frac{6}{8}$
14) $\frac{7}{9}+\frac{4}{10}$
15) $\frac{3}{6}+\frac{5}{6}$
16) $\frac{1}{6}+\frac{2}{6}$

MathVine - Pre-Algebra

Adding Fractions
Add.

1) $\frac{2}{6}+\frac{1}{6}$
2) $\frac{3}{6}+\frac{2}{6}$
Answer: $\frac{5}{6}$
3) $\frac{4}{6}+\frac{3}{6}$
Answer: $1 \frac{1}{6}$
4) $\frac{2}{10}+\frac{4}{9}$
Answer: $\frac{29}{45}$
5) $\frac{4}{5}+\frac{3}{4}$
Answer:
$1 \overline{20}$
6) $\frac{2}{3}+\frac{1}{5}$

Answer: $\frac{13}{15}$
7) $\frac{2}{3}+\frac{2}{3}$

Answer: $1 \frac{1}{3}$
8) $\frac{7}{9}+\frac{8}{9}$

Answer: $1 \frac{2}{3}$
9) $\frac{1}{9}+\frac{7}{9}$
Answer: $\frac{8}{9}$
10) $\frac{3}{9}+\frac{5}{10}$
11) $\frac{5}{9}+\frac{1}{4}$
12) $\frac{3}{4}+\frac{4}{6}$

$$
\text { Answer: } \frac{29}{36}
$$

Answer:

$$
1 \frac{5}{12}
$$


14) $\frac{7}{9}+\frac{4}{10}$
15) $\frac{3}{6}+\frac{5}{6}$
16) $\frac{1}{6}+\frac{2}{6}$

Answer: $1 \frac{1}{3}$

MathVine - Pre-Algebra

Adding Fractions

Name

Date $\qquad$ Period $\qquad$

1) $\frac{2}{6}+\frac{1}{6}$
2) $\frac{3}{6}+\frac{2}{6}$
3) $\frac{4}{6}+\frac{3}{6}$
4) $\frac{2}{10}+\frac{4}{9}$

Since these
fractions have the
same denominator, we can just add the
${ }_{2}{ }^{n}{ }^{2}{ }^{2}$
$\overline{6}+\overline{6}=\frac{\overline{6}}{}$
$\overline{6}$ can be reduced,
since 3 is a factor of
both 3 and 6 :
$\overline{6} \div \overline{3}=\overline{2}$
The fraction is now in lowest terms

Since these
fractions have the same denominator, we can just add the ${ }_{3}$ numerators
$\overline{6}+\overline{6}=\overline{6}$

Since these
fractions have the same denominator, we can just add the qumerators
$\overline{6}+\overline{6}=\frac{\overline{6}}{7}$
Because $\overline{6}$ is an
improper fraction
(the numerator is greater than the denominator), we need to convert it to
${ }_{7}$ mixed number $\overline{6}=1 \frac{1}{6}$

Since these
fractions have
different
denominators, we
need to find the
least common
multiple of the
denominators
The least common
multiple of 9 and 10
is 90 , so we need to
multiply to make
each of the
${ }_{2}^{\text {denominators }}=90$
$\overline{4_{4}^{0}} * \overline{9}=\overline{90}$
$\overline{9} * \overline{10}=\overline{90}$
Since these
fractions have the same denominator, we can just add the numerators
$\overline{90}+\overline{90}=\overline{90}$
$\overline{90}$ can be reduced,
since 2 is a factor of
both 58 and 90 :
$\overline{90} \div \overline{2}=\overline{45}$
The fraction is now in lowest terms
5) $\frac{4}{5}+\frac{3}{4}$

Since these
fractions have different denominators, we need to find the least common multiple of the denominators The least common multiple of 4 and 5 is 20 , so we need to multiply to make each of the denominators $=20$ $\overline{5} * \frac{\overline{4}}{5}=\overline{20}$
$\overline{4} * \overline{5}=\overline{20}$
Since these
fractions have the same denominator, we can just add the numerators ${ }^{16}{ }^{15}$
$\overline{20}+\overline{20}=\overline{20}$
Because $\overline{20}$ is an
improper fraction
(the numerator is
greater than the denominator), we need to convert it to
31 mixed number
$\frac{31}{20}=1 \frac{1}{20}$
6) $\frac{2}{3}+\frac{1}{5}$

Since these
fractions have
different
denominators, we
need to find the
least common
multiple of the
denominators
The least common
multiple of 3 and 5
is 15 , so we need to
multiply to make
each of the
2 deneminators $^{2}=15$
$\overline{3} * \overline{5}=\overline{15}$
$1 \quad 3$
$\overline{5} * \overline{3}=\overline{15}$
Since these
fractions have the
same denominator, we can just add the
7) $\frac{2}{3}+\frac{2}{3}$

Since these
fractions have the same denominator, we can just add the numerators
$\frac{2}{3}+\overline{3}=\frac{4}{3}$
Because $\overline{3}$ is an
improper fraction (the numerator is greater than the denominator), we need to convert it to a. mixed number
$\frac{4}{3}=1 \frac{1}{3}$
${ }_{10}{ }^{n}$ merantors
$\overline{15}+\overline{15}=\overline{15}$
9) $\frac{1}{9}+\frac{7}{9}$

Since these
fractions have the same denominator, we can just add the numerators $\overline{9}+\overline{9}=\overline{9}$
10) $\frac{3}{9}+\frac{5}{10}$

Since these fractions have different
denominators, we need to find the least common
multiple of the denominators
The least common multiple of 9 and 10 is 90 , so we need to multiply to make each of the
$\begin{aligned} & \text { denominators } \\ & 30 \\ & =10\end{aligned}=90$
$\overline{9}_{5} * \overline{10}=\overline{90}$
$\overline{10} * \overline{9}=\overline{90}$
Since these
fractions have the same denominator, we can just add the numerators
$\overline{90}+\overline{90}=\overline{90}$
$\overline{90}$ can be reduced,
since 15 is a factor
of both 75 apd 90 :
$\overline{90} \div \overline{15}=\overline{6}$
The fraction is now in lowest terms
14) $\frac{7}{9}+\frac{4}{10}$

Since these
fractions have
different denominators, we need to find the least common
11) $\frac{5}{9}+\frac{1}{4}$

Since these
fractions have
different
denominators, we
need to find the
least common
multiple of the
denominators
The least common
multiple of 4 and 9
is 36 , so we need to
multiply to make
each of the
denominators $=36$
$\overline{9} * \overline{4}=\overline{36}$
$\overline{1} * \frac{9}{9}=\frac{9}{36}$
Since these
fractions have the
same denominator,
we can just add the

$\overline{36}+\overline{36}=\overline{36}$
15) $\frac{3}{6}+\frac{5}{6}$

Since these
fractions have the same denominator, we can just add the numerators
$\frac{3}{\alpha}+\frac{5}{c}=\frac{8}{c}$
12) $\frac{3}{4}+\frac{4}{6}$

Since these fractions have different denominators, we need to find the least common multiple of the denominators The least common multiple of 4 and 6 is 12 , so we need to multiply to make each of the ${ }_{3}$ denominators $=12$ $\overline{4} * \overline{3}=\overline{12}$
$\overline{4} * \frac{2}{2}=\frac{8}{12}$
Since these fractions have the same denominator, we can just add the ${ }_{9}^{n}$ numerators
$\overline{12}+\overline{12}=\overline{12}$
Because $\overline{12}$ is an
improper fraction (the numerator is greater than the denominator), we need to convert it to 17 mixed number $\overline{12}=1 \overline{12}$
16) $\frac{1}{6}+\frac{2}{6}$

Since these fractions have the same denominator, we can just add the numerators
$\frac{1}{\alpha}+\frac{2}{\alpha}=\frac{3}{\alpha}$


