\qquad

Adding Fractions
Date \qquad Period \qquad

Add.

1) $\frac{5}{7}+\frac{1}{9}$
2) $\frac{1}{7}+\frac{2}{6}$
3) $\frac{3}{8}+\frac{1}{2}$
4) $\frac{2}{9}+\frac{5}{6}$
5) $\frac{5}{8}+\frac{3}{5}$
6) $\frac{4}{8}+\frac{1}{5}$
7) $\frac{9}{10}+\frac{6}{10}$
8) $\frac{1}{8}+\frac{6}{8}$
9) $\frac{1}{10}+\frac{7}{10}$
10) $\frac{3}{5}+\frac{4}{5}$
11) $\frac{1}{3}+\frac{1}{3}$
12) $\frac{4}{6}+\frac{4}{5}$
13) $\frac{1}{4}+\frac{1}{4}$
14) $\frac{8}{9}+\frac{4}{9}$
15) $\frac{3}{5}+\frac{3}{5}$
16) $\frac{8}{10}+\frac{7}{9}$

MathVine - Pre-Algebra

Adding Fractions
Add.

1) $\frac{5}{7}+\frac{1}{9}$
Answer: $\frac{52}{63}$
2) $\frac{1}{7}+\frac{2}{6}$
Answer: $\frac{10}{21}$
3) $\frac{3}{8}+\frac{1}{2}$
Answer: $\overline{8}$
4) $\frac{2}{9}+\frac{5}{6}$
Answer:
$1 \frac{1}{18}$
5) $\frac{5}{8}+\frac{3}{5}$
6) $\frac{4}{8}+\frac{1}{5}$
7) $\frac{9}{10}+\frac{6}{10}$
8) $\frac{1}{8}+\frac{6}{8}$

Answer: $1 \frac{1}{2}$
Answer: $\overline{8}$
9) $\frac{1}{10}+\frac{7}{10}$
10) $\frac{3}{5}+\frac{4}{5}$
Answer: $\frac{4}{5}$
Answer: $1 \frac{2}{5}$
11) $\frac{1}{3}+\frac{1}{3}$
Answer: $\frac{2}{3}$
12) $\frac{4}{6}+\frac{4}{5}$
Answer:

$$
1 \frac{7}{15}
$$

13) $\frac{1}{4}+\frac{1}{4}$

Answer: $\frac{1}{2}$
14) $\frac{8}{9}+\frac{4}{9}$

Answer: $1 \frac{1}{3}$
15) $\frac{3}{5}+\frac{3}{5}$
Answer: $1 \frac{1}{5}$
16) $\frac{8}{10}+\frac{7}{9}$

Answer:
26
$1 \frac{26}{45}$

MathVine - Pre-Algebra

Adding Fractions

Name

Date \qquad Period \qquad

1) $\frac{5}{7}+\frac{1}{9}$
2) $\frac{1}{7}+\frac{2}{6}$
3) $\frac{3}{8}+\frac{1}{2}$
4) $\frac{2}{9}+\frac{5}{6}$

Since these
fractions have
different
denominators, we
need to find the
least common
multiple of the
denominators
The least common
multiple of 7 and 9
is 63 , so we need to
multiply to make each of the
denominators $=63$
$\frac{5}{7} * \frac{9}{9}=\frac{45}{63}$
$\frac{1}{9} * \frac{7}{7}=\frac{7}{63}$
Since these
fractions have the same denominator, we can just add the qumerators
$\frac{75}{63}+\frac{7}{63}=\frac{52}{63}$

Since these
fractions have
different
denominators, we
need to find the
least common
multiple of the
denominators
The least common
multiple of 6 and 7
is 42 , so we need to
multiply to make
each of the
${ }_{1}$ denominators $=42$
$\overline{7} * \overline{6}=\overline{42}$
$\frac{2}{6} * \frac{7}{7}=\frac{14}{42}$
Since these
fractions have the
same denominator, we can just add the
${ }_{6}^{\text {numerators }}{ }_{14} 20$
$\overline{42}+\overline{42}=\overline{42}$
$\overline{42}$ can be reduced,
since 2 is a factor of
both 20 and 42 :
$\overline{42} \div \overline{2}=\overline{21}$
The fraction is now in lowest terms

Since these
fractions have
different
denominators, we
need to find the
least common
multiple of the
denominators
The least common
multiple of 2 and 8
is 8 , so we need to
multiply to make
each of the

$\overline{8} * \overline{1}=\overline{8}$
$\frac{1}{2} * \frac{4}{4}=\frac{4}{8}$
Since these
fractions have the
same denominator,
we can just add the
numerators
$\overline{8}+\frac{4}{8}=\overline{7}$

f

(the numerator is greater than the denominator), we need to convert it to
a mixed number
$\frac{19}{18}=1 \frac{1}{18}$
5) $\frac{5}{8}+\frac{3}{5}$

Since these
fractions have
different
denominators, we need to find the least common
multiple of the denominators
The least common
multiple of 5 and 8 is 40 , so we need to multiply to make each of the deneminators $=40$
$\frac{5}{8} * \frac{5}{5}=\frac{25}{40}$
$\frac{3}{5} * \frac{8}{8}=\frac{24}{40}$
$\overline{5} * \overline{8}=\overline{40}$
Since these
fractions have the same denominator, we can just add the $25{ }_{24}{ }_{2}$
$\overline{40}+\overline{40}=\overline{40}$ 49
Because $\overline{40}$ is an improper fraction (the numerator is greater than the denominator), we need to convert it to ${ }_{4}{ }^{\text {mixed number }}$ $\frac{49}{40}=1 \frac{9}{40}$
6) $\frac{4}{8}+\frac{1}{5}$

Since these
fractions have
different
denominators, we
need to find the
least common
multiple of the
denominators
The least common
multiple of 5 and 8
is 40 , so we need to
multiply to make
each of the
denominators $=40$
$\overline{8} * \overline{5}=\overline{40}$
$\overline{5} * \overline{8}=\frac{\overline{40}}{}$
Since these
fractions have the
same denominator, we can just add the
numerators
$\overline{40}+\overline{40}=\overline{40}$
$\overline{40}$ can be reduced,
since 4 is a factor of
both 28 and 40 :
$\overline{40} \div \overline{4}=\overline{10}$
The fraction is now
in lowest terms
7) $\frac{9}{10}+\frac{6}{10}$

Since these
fractions have the
same denominator,
we can just add the
${ }_{9}$ numerators
$\frac{9}{10}+\frac{6}{10}=\frac{15}{10}$
$\overline{10}$ can be reduced,
since 5 is a factor of
both 15 and 10 :
$\overline{10} \div \overline{5}=\overline{2}$
The fraction is now
in lowest țerms
Because $\overline{2}$ is an
improper fraction
(the numerator is
greater than the
denominator), we
need to convert it to
${ }_{3}$ mixed number
$\overline{2}=1 \overline{2}$
8) $\frac{1}{8}+\frac{6}{8}$

Since these
fractions have the
same denominator,
we can just add the
numerators
$\frac{1}{8}+\frac{6}{8}=\frac{7}{8}$
9) $\frac{1}{10}+\frac{7}{10}$

Since these
fractions have the
same denominator, we can just add the numerators
$\frac{1}{10}+\frac{7}{10}=\frac{8}{10}$
$\frac{8}{10}$ can be reduced,
since 2 is a factor of ${ }_{8}$ both 8_{2} and 10 :
$\overline{10} \div \overline{2}=\overline{5}$
The fraction is now in lowest terms
10) $\frac{3}{5}+\frac{4}{5}$

Since these fractions have the same denominator, we can just add the numerators
$\frac{3}{5}+\frac{7}{5}=\frac{7}{5}$
Because $\overline{5}$ is an
improper fraction
(the numerator is greater than the denominator), we need to convert it to a mixed number
11) $\frac{1}{3}+\frac{1}{3}$

Since these
fractions have the same denominator, we can just add the numerators
$\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$
12) $\frac{4}{6}+\frac{4}{5}$

Since these fractions have different denominators, we need to find the least common
multiple of the denominators
The least common
multiple of 5 and 6
is 30 , so we need to
multiply to make each of the
deneminators $=30$
$\overline{6} * \overline{5}=\overline{30}$
$4{ }_{6}^{2}$
$\overline{5} * \overline{6}=\overline{30}$
Since these
fractions have the same denominator, we can just add the ${ }_{20} 0_{24}$ 44
$\overline{34}+\overline{30}=\overline{30}$
$\overline{30}$ can be reduced,
since 2 is a factor of
both $\frac{44}{2}$ and 32 :
$\overline{30} \div \overline{2}=\overline{15}$
The fraction is now in lowest terms

Because $\overline{15}$ is an
improper fraction (the numerator is greater than the denominator), we need to convert it to
$22^{\text {mixed number }}$
$\overline{15}=1 \overline{15}$
13) $\frac{\pi}{4}+\frac{亠}{4}$

Since these
fractions have the same denominator, we can just add the numerators
$\overline{4}+\overline{4}=\overline{4}$
$\overline{4}$ can be reduced,
since 2 is a factor of
both 2 and 4 :
$\overline{4} \div \overline{2}=\overline{2}$
The fraction is now in lowest terms
14) $\overline{\overline{9}}+\frac{\star}{9}$

Since these
fractions have the same denominator, we can just add the numerators
$\frac{8}{9}+\frac{4}{9}=\frac{12}{9}$
12
$\overline{9}$ can be reduced,
since 3 is a factor of
$12{ }_{3}$ both 12 and 9 :
$\overline{9} \div \overline{3}=\overline{3}$
The fraction is now in lowest terms
Because $\overline{3}$ is an
improper fraction
(the numerator is
greater than the denominator), we need to convert it to ${ }_{4}$ mixed number $\overline{3}=1 \overline{3}$
15) $\frac{v}{5}+\frac{v}{5}$

Since these
fractions have the
same denominator, we can just add the numerators
$\frac{3}{5}+\frac{6}{5}=\frac{6}{5}$
Because $\overline{5}$ is an
improper fraction (the numerator is greater than the denominator), we need to convert it to ${ }_{6}$ mixed number
$\overline{5}=1 \overline{5}$
16) $\frac{\breve{4}}{10}+\frac{\cdot}{9}$

Since these
fractions have
different
denominators, we
need to find the least common
multiple of the denominators
The least common
multiple of 9 and 10
is 90 , so we need to
multiply to make each of the
${ }_{8}^{\text {denominators }}=90$
$\overline{\overline{10}} * \overline{9}=\overline{90}$
$\overline{9} * \overline{10}=\overline{90}$
Since these
fractions have the
same denominator,
we can just add the
numerators
$\frac{72}{90}+\frac{70}{90}=\frac{142}{90}$
142
$\overline{90}$ can be
reduced, since 2 is
a factor of both 142
and $90{ }_{2}$
$\overline{90} \div \overline{2}=\overline{45}$
The fraction is now in lowest terms
Because $\overline{45}$ is an
improper fraction
(the numerator is greater than the denominator), we
need to convert it to
${ }^{7} 1^{\text {mixed number }}$
$\overline{45}=1 \overline{45}$

