MathVine - Pre-Algebra

Greatest Common Factor
Date \qquad Period \qquad

Find the greatest common factor of the given numbers.

greatest common factor

1. $\quad 14$ and 16
2. $\quad 28$ and 35
3. $\quad 12$ and 22
4. $\quad 32$ and 8
5. 20 and 5
6. $\quad 18$ and 28
7. 12 and 10
8. $\quad 8$ and 26
9. $\quad 16$ and 32
10. 25 and 10
11. 21 and 33
12. $\quad 14$ and 24

MathVine - Pre-Algebra

Greatest Common Factor

Name \qquad

Date \qquad Period \qquad

Find the greatest common factor of the given numbers.

1. $\quad 14$ and 16
2. 28 and 35
3. $\quad 12$ and 22
4. $\quad 32$ and 8
5. $\quad 20$ and 5
6. $\quad 18$ and 28
7. $\quad 12$ and 10
8. $\quad 8$ and 26
9. $\quad 16$ and 32
10. 25 and 10
11. 21 and 33
12. $\quad 14$ and 24

greatest common factor
2
7
2
8
5
2
2
2
16
5
2
2

MathVine - Pre-Algebra

Greatest Common Factor

Solution Steps

${ }^{1)} 14$ and 16
First list the factors of the number (the numbers that divide each number with zero remainder)

Divisors of 14 are: 1, 2, 7, 14
Divisors of 16 are: 1, 2, 4, 8, 16
The largest number that divides 14 and 16 is 2 , so the GCF $=2$
${ }^{2)} 28$ and 35
First list the factors of the number (the numbers that divide each number with zero remainder)

Divisors of 28 are: 1, 2, 4, 7, 14, 28
Divisors of 35 are: 1, 5, 7, 35
The largest number that divides 28 and 35 is 7 , so the GCF $=7$
${ }^{3)} 12$ and 22
First list the factors of the number (the numbers that divide each number with zero remainder)

Divisors of 12 are: 1, 2, 3, 4, 6, 12
Divisors of 22 are: 1, 2, 11, 22
The largest number that divides 12 and 22 is 2 , so the GCF $=2$

${ }^{4}$) 32 and 8

First list the factors of the number (the numbers that divide each number with zero remainder)

Divisors of 32 are: 1, 2, 4, 8, 16, 32
Divisors of 8 are: 1, 2, 4, 8
The largest number that divides 32 and 8 is 8 , so the GCF $=8$
5)

20 and 5
First list the factors of the number (the numbers that divide each number with zero remainder)

Divisors of 20 are: 1, 2, 4, 5, 10, 20
Divisors of 5 are: 1, $\mathbf{5}$
The largest number that divides 20 and 5 is 5 , so the GCF $=5$
${ }^{6)} 18$ and 28
First list the factors of the number (the numbers that divide each number with zero remainder)

Divisors of 18 are: 1, 2, 3, 6, 9, 18
Divisors of 28 are: 1, 2, 4, 7, 14, 28
The largest number that divides 18 and 28 is 2 , so the GCF $=2$
${ }^{7)} 12$ and 10
First list the factors of the number (the numbers that divide each number with zero remainder)

Divisors of 12 are: 1, 2, 3, 4, 6, 12
Divisors of 10 are: 1, 2, 5, 10
The largest number that divides 12 and 10 is 2 , so the GCF = 2
${ }^{8)} 8$ and 26
First list the factors of the number (the numbers that divide each number with zero remainder)
Divisors of 8 are: 1, 2, 4, 8
Divisors of 26 are: 1, 2, 13, 26
The largest number that divides 8 and 26 is 2 , so the GCF $=2$
9)

16 and 32
First list the factors of the number (the numbers that divide each number with zero remainder)

Divisors of 16 are: 1, 2, 4, 8, 16
Divisors of 32 are: 1, 2, 4, 8, 16, 32
The largest number that divides 16 and 32 is 16 , so the GCF = 16
${ }^{10)} 25$ and 10
First list the factors of the number (the numbers that divide each number with zero remainder)

Divisors of 25 are: 1, 5, 25
Divisors of 10 are: 1, 2, 5, 10
The largest number that divides 25 and 10 is 5 , so the GCF $=5$
${ }^{11)} 21$ and 33
First list the factors of the number (the numbers that divide each number with zero remainder)

Divisors of 21 are: 1, 3, 7, 21
Divisors of 33 are: 1, 3, 11, 33
The largest number that divides 21 and 33 is 3 , so the GCF = 3
${ }^{12)} 14$ and 24
First list the factors of the number (the numbers that divide each number with zero remainder)

Divisors of 14 are: 1, 2, 7, 14
Divisors of 24 are: 1, 2, 3, 4, 6, 8, 12, 24
The largest number that divides 14 and 24 is 2 , so the GCF $=2$

