MathVine - Pre-Algebra

Subtracting Fractions

Name \qquad

Date \qquad Period \qquad

Subtract.

1) $\frac{3}{7}-\frac{7}{7}$
2) $\frac{8}{10}-\frac{2}{2}$
3) $\frac{1}{2}-\frac{1}{4}$
4) $\frac{6}{7}-\frac{8}{10}$
5) $\frac{2}{3}-\frac{2}{5}$
6) $\frac{5}{6}-\frac{6}{6}$
7) $\frac{9}{10}-\frac{7}{7}$
8) $\frac{1}{5}-\frac{2}{8}$
9) $\frac{8}{10}-\frac{7}{10}$
10) $\frac{5}{8}-\frac{3}{10}$
11) $\frac{3}{5}-\frac{5}{5}$
12) $\frac{3}{6}-\frac{1}{6}$
13) $\frac{1}{6}-\frac{4}{9}$
14) $\frac{7}{8}-\frac{3}{8}$
15) $\frac{2}{4}-\frac{4}{4}$
16) $\frac{5}{10}-\frac{7}{10}$

MathVine - Pre-Algebra

Subtracting Fractions
Subtract.

1) $\frac{3}{7}-\frac{7}{7}$
2) $\frac{8}{10}-\frac{2}{2}$
Answer:
$-\overline{5}$
3) $\frac{1}{2}-\frac{1}{4}$
Answer: $\frac{1}{4}$
4) $\frac{6}{7}-\frac{8}{10}$
Answer: $\frac{2}{35}$
5) $\frac{2}{3}-\frac{2}{5}$
6) $\frac{5}{6}-\frac{6}{6}$

Answer:
$-\frac{1}{6}$
7) $\frac{9}{10}-\frac{7}{7}$

Answer:
$-\frac{1}{10}$
8) $\frac{1}{5}-\frac{2}{8}$

Answer:
$-\overline{20}$
9) $\frac{8}{10}-\frac{7}{10}$
10) $\frac{5}{8}-\frac{3}{10}$
11) $\frac{3}{5}-\frac{5}{5}$
12) $\frac{3}{6}-\frac{1}{6}$

Answer:
$-\frac{2}{5}$

14) $\frac{7}{8}-\frac{3}{8}$
15) $\frac{2}{4}-\frac{4}{4}$
16) $\frac{5}{10}-\frac{7}{10}$

Answer:
Answer:
$-\overline{5}$

MathVine - Pre-Algebra

Subtracting Fractions

Name

Date \qquad Period \qquad
Solution Steps

1) $\frac{3}{7}-\frac{7}{7}$

Since these fractions have the same denominator, we can just subtract the numerators $\overline{7}-\overline{7}=-\overline{7}$
2) $\frac{8}{10}-\frac{2}{2}$

Since these
fractions have
different
denominators, we
need to find the
least common
multiple of the
denominators
The least common
multiple of 2 and 10
is 10 , so we need to
multiply to make
each of the
8810
$\overline{10}_{2} * \overline{1}_{5}=\overline{10}$
$-\overline{2} * \overline{5}=-\frac{10}{10}$
Since these
fractions have the
same denominator, we can just subtract
${ }_{8}{ }_{8}{ }^{2}{ }_{10}{ }^{2}$
$\overline{10}-\overline{10}=-\overline{10}$
$-\overline{10}$ can be
reduced, since 2 is
a factor of both -2
and ${ }_{2} 10$: $\quad 1$
$-\overline{10} \div \overline{2}=-\overline{5}$
The fraction is now in lowest terms
3) $\frac{1}{2}-\frac{1}{4}$

Since these
fractions have
different
denominators, we
need to find the
least common
multiple of the
denominators
The least common
multiple of 2 and 4
is 4 , so we need to
multiply to make
each of the
denominators $=4$
$\overline{2} * \overline{2}=\overline{4}$
$-\frac{1}{4} * \frac{1}{1}=-\frac{1}{4}$
Since these
fractions have the
same denominator, we can just subtract
${ }_{2}$ the numerators
$\overline{4}-\overline{4}=\overline{4}$

4) $\frac{6}{7}-\frac{8}{10}$

Since these
fractions have
different
denominators, we
need to find the
least common
multiple of the
denominators
The least common multiple of 7 and 10
is 70 , so we need to
multiply to make
each of the
denominators $=70$
$\overline{7} * \overline{10}=\overline{70}$
$-\frac{8}{10} * \frac{7}{7}=-\frac{56}{70}$
Since these
fractions have the same denominator, we can just subtract
the numerators
$\overline{70}-\overline{70}=\overline{70}$
$\overline{70}$ can be reduced,
since 2 is a factor of
both 4_{2} and 70 :
$\overline{70} \div \overline{2}=\overline{35}$
The fraction is now in lowest terms
5) $\frac{2}{3}-\frac{2}{5}$

Since these
fractions have
different
denominators, we
need to find the
least common
multiple of the
denominators
The least common
multiple of 3 and 5
is 15 , so we need to
multiply to make
each of the
denominators $=15$
$\overline{3} * \overline{5}=\overline{15}$
$-\frac{2}{5} * \frac{3}{3}=-\frac{6}{15}$
Since these
fractions have the
same denominator, we can just subtract
${ }_{10}^{\text {the numerators }}$
$\overline{15}-\overline{15}=\overline{15}$
6) $\frac{5}{6}-\frac{6}{6}$

Since these
fractions have the
same denominator,
we can just subtract
the numerators
$\frac{5}{6}-\frac{6}{6}=-\frac{1}{6}$
9) $\frac{8}{10}-\frac{7}{10}$

Since these fractions have the same denominator, we can just subtract the numerators $\overline{10}-\overline{10}=\overline{10}$
10) $\frac{5}{8}-\frac{3}{10}$

Since these
fractions have
different
denominators, we need to find the
least common
multiple of the denominators
The least common
multiple of 8 and 10
is 40 , so we need to
multiply to make
each of the
denominators $=40$
$\overline{8} *{ }_{3}^{5}=\overline{40}$
$-\frac{3}{10} * \frac{4}{4}=-\frac{12}{40}$
Since these
fractions have the
same denominator, we can just subtract
the numerators
$\overline{40}-\overline{40}=\overline{40}$
11) $\frac{3}{5}-\frac{5}{5}$

Since these
fractions have the same denominator, we can just subtract the numerators
$\frac{3}{5}-\overline{5}=-\frac{2}{5}$
12) $\frac{3}{6}-\frac{1}{6}$

Since these fractions have the same denominator, we can just subtract the numerators
$\overline{6}-\overline{6}=\overline{6}$
$\overline{6}$ can be reduced,
since 2 is a factor of
${ }_{2}$ both 2 and 6 :
$\overline{6} \div \overline{2}=\overline{3}$
The fraction is now
in lowest terms
13) $\frac{1}{6}-\frac{4}{9}$
14) $\frac{7}{8}-\frac{3}{8}$

Since these
fractions have the same denominator, we can just subtract
the numerators
$\overline{8}-\overline{8}=\overline{8}$
$\overline{8}$ can be reduced,
since 4 is a factor of both 4 and 8 :
$\overline{8} \div \overline{4}=\overline{2}$
The fraction is now in lowest terms
15) $\frac{2}{4}-\frac{4}{4}$

Since these
fractions have the same denominator, we can just subtract
the numerators
$\frac{2}{4}-\frac{4}{4}=-\frac{2}{4}$
$-\overline{4}$ can be
reduced, since 2 is
a factor of both -2
and $4:$
$-\frac{2}{4} \div \frac{2}{2}=-\frac{1}{2}$
The fraction is now in lowest terms
16) $\frac{5}{10}-\frac{7}{10}$

Since these fractions have the same denominator, we can just subtract ${ }_{5}$ the numerators $\overline{10}-\overline{10}=-\frac{2}{10}$ $-\frac{2}{10}$ can be reduced, since 2 is a factor of both -2 and 10 :
$-\overline{10} \div \overline{2}=-\overline{5}$
The fraction is now in lowest terms

Since these
fractions have the same denominator, we can just subtract
${ }_{3}{ }^{\text {the }}{ }^{18}{ }_{8}{ }^{18}={ }_{5}$
$\overline{18}-\overline{18}=-\overline{18}$

