MathVine - Pre-Algebra

Subtracting Fractions

Name \qquad

Date \qquad Period \qquad

Subtract.

1) $\frac{1}{3}-\frac{3}{5}$
2) $\frac{2}{3}-\frac{8}{8}$
3) $\frac{2}{3}-\frac{4}{4}$
4) $\frac{2}{8}-\frac{5}{9}$
5) $\frac{5}{8}-\frac{6}{10}$
6) $\frac{2}{4}-\frac{4}{4}$
7) $\frac{3}{9}-\frac{1}{9}$
8) $\frac{1}{3}-\frac{2}{3}$
9) $\frac{5}{7}-\frac{5}{6}$
10) $\frac{3}{6}-\frac{5}{6}$
11) $\frac{7}{9}-\frac{1}{9}$
12) $\frac{2}{5}-\frac{2}{3}$
13) $\frac{4}{6}-\frac{3}{6}$
14) $\frac{1}{8}-\frac{4}{8}$
15) $\frac{6}{9}-\frac{4}{8}$
16) $\frac{5}{8}-\frac{3}{8}$

MathVine - Pre-Algebra

Subtracting Fractions
Subtract.

1) $\frac{1}{3}-\frac{3}{5}$
Answer:
$-\overline{15}$
2) $\begin{gathered}\frac{2}{3}-\frac{8}{8} \\ \begin{array}{c}\text { Answer: } \\ -\frac{1}{3}\end{array}\end{gathered}$
3) $\begin{gathered}\frac{2}{3}-\frac{4}{4} \\ \begin{array}{c}\text { Answer: } \\ -\frac{1}{3}\end{array}\end{gathered}$
4) $\frac{2}{8}-\frac{5}{9}$

Name \qquad

Date \qquad Period___
\qquad

5) $\frac{5}{8}-\frac{6}{10}$
6) $\frac{2}{4}-\frac{4}{4}$

Answer:
$-\overline{2}$
7) $\frac{3}{9}-\frac{1}{9}$

Answer: $\frac{2}{9}$

> Answer:
> $-\frac{1}{3}$
9) $\frac{5}{7}-\frac{5}{6}$
10) $\frac{3}{6}-\frac{5}{6}$
Answer:
$-\frac{5}{42}$
Answer:
$-\frac{1}{3}$
11) $\frac{7}{9}-\frac{1}{9}$
12) $\frac{2}{5}-\frac{2}{3}$

Answer:
$-\overline{15}$
13) $\frac{4}{6}-\frac{3}{6}$
14) $\frac{1}{8}-\frac{4}{8}$
15) $\frac{6}{9}-\frac{4}{8}$
16) $\frac{5}{8}-\frac{3}{8}$
Answer: $\frac{1}{6}$
Answer: $\frac{1}{4}$

MathVine - Pre-Algebra
Name

Subtracting Fractions
Date \qquad Period \qquad

Solution Steps

1) $\frac{1}{3}-\frac{3}{5}$	2) $\frac{2}{3}-\frac{8}{8}$	3) $\frac{2}{3}-\frac{4}{4}$	4) $\frac{2}{8}-\frac{5}{9}$
Since these	Since these	Since these	Since these
ns hav	fractions have	fractions hav	ions hav
ferent	different	different	differe
nominators, we	denominators, we	denominators, we	denominators, we
ed to find the	need to find the	need to find the	d to find th
ast common	least common	least common	com
ultiple of the	multiple of the	multiple of the	multiple of the
nominators	denominators	denominators	denominators
The least common	The least common multiple of 3 and 8	The least common	The least common
need	is 24 , so we need	is 12 , so we need	is 72 , so we need
tiply to make	multiply to make	multiply to mak	ultiply to make
each of the	each of the	each of the	each of the
denominators $=15$	2 denominators $=24$	denominators $=12$	2 denominators $=72$
$\overline{3} * \overline{5}=\frac{\square}{15}$	$\overline{3} * \overline{8}=\overline{24}$	$\overline{3} * \overline{4}=\overline{12}$	$\overline{8} * \overline{9}=\overline{72}$
$\begin{array}{llll}3 & 3\end{array}$	${ }^{8} \quad 3 \quad 24$	$43^{12} 12$	$5 \quad 8 \quad 40$
$\overline{5} * \overline{3}=-\overline{15}$	$\overline{8} * \overline{3}=-\overline{24}$	$\overline{4} * \overline{3}=-\overline{12}$	$\overline{9} * \overline{8}=-\overline{72}$
Since these	Since these	Since these	Since these
fractions have the	fractions have	fractions have	fractions have
same denominator,	same denominator,	same denominator,	same denominator,
we can just subtract			
${ }_{5}$ the numerators ${ }_{4}$	${ }^{\text {the }} 16{ }^{\text {numerators }} 8$	${ }_{8}{ }_{8}{ }_{12}{ }^{12}{ }^{12}$	the numerators 22
$\overline{15}-\overline{15}=-\overline{15}$	$\overline{24}-\overline{8}{ }_{8}=-\overline{24}$	$\overline{12}-\overline{12}=-\overline{12}$	$\overline{72}-\overline{72}=-\overline{72}$
	$-\overline{24}$	$-\overline{12}$	$-\overline{72}$ can b
	reduced, since 8 is	duced, since 4 is	reduced, since 2 is
	a factor of both -8	a factor of both -4	a factor of both
	$\text { and }_{8} 24:{ }_{8}$	$\operatorname{and}_{4} 12:{ }_{4}$	$-22 \text { and }_{2} 72: \quad 11$
	$-\overline{24} \div \overline{8}=-\overline{3}$	$-\overline{12} \div \overline{4}=-\overline{3}$	$-\overline{72} \div \overline{2}=-\overline{36}$
	The fraction is now in lowest terms	The fraction is now in lowest terms	The fraction is now in lowest terms

5) $\frac{5}{8}-\frac{6}{10}$
6) $\frac{2}{4}-\frac{4}{4}$

Since these
fractions have the
same denominator, we can just subtract
the numerators
$\frac{2}{4}-\overline{4}=-\frac{2}{4}$
$-\frac{2}{4}$ can be
reduced, since 2 is
a factor of both -2
and 4: 2
$-\overline{4} \div \overline{2}=-\overline{2}$
The fraction is now
in lowest terms
Since these
fractions have
different
denominators, we need to find the least common multiple of the denominators
The least common multiple of 8 and 10 is 40 , so we need to multiply to make each of the
deneminators $=40$
$\overline{8} * \overline{5}=\frac{\overline{40}}{40}$
7) $\frac{3}{9}-\frac{1}{9}$
8) $\frac{1}{3}-\frac{2}{3}$
$-\frac{6}{10} * \frac{4}{4}=-\frac{24}{40}$
Since these
fractions have the same denominator, we can just subtract
the numerators
$\overline{40}-\overline{40}=\overline{40}$

Since these
fractions have the same denominator, we can just subtract the numerators
$\overline{9}-\overline{9}=\overline{9}$
Since these fractions have the same denominator, we can just subtract
the numerators
$\frac{1}{3}-\frac{1}{3}=-\frac{1}{3}$
9) $\frac{5}{7}-\frac{5}{6}$
10) $\frac{3}{6}-\frac{5}{6}$
11) $\frac{7}{9}-\frac{1}{9}$
12) $\frac{2}{5}-\frac{2}{3}$

Since these
fractions have
different
denominators, we
need to find the
least common
multiple of the
denominators
The least common
multiple of 6 and 7
is 42 , so we need to
multiply to make
each of the
denominators $=42$
$\overline{7} * \overline{6}=\overline{42}$
$-\frac{5}{6} * \frac{7}{7}=-\frac{35}{42}$
Since these
fractions have the
same denominator, we can just subtract
the numerators
$\frac{30}{42}-\frac{35}{42}=-\frac{5}{42}$

Since these
fractions have the
same denominator,
we can just subtract
${ }_{3}$ the numerators
$\overline{6}-\overline{6}=-\overline{6}$
$-\frac{2}{6}$ can be
reduced, since 2 is
a factor of both -2
and 6 :
$-\overline{6} \div \overline{2}=-\overline{3}$
The fraction is now
in lowest terms

Since these
fractions have the same denominator, we can just subtract
the numerators
$\overline{9}-\overline{9}=\overline{9}$
$\overline{9}$ can be reduced,
since 3 is a factor of both 6 and 9 :
$\overline{9} \div \overline{3}=\overline{3}$
The fraction is now in lowest terms

Since these fractions have different denominators, we need to find the least common
multiple of the
denominators
The least common
multiple of 3 and 5
is 15 , so we need to
multiply to make
each of the
denominators $=15$
$\overline{5} * \overline{3}=\overline{15}$
$-\frac{2}{3} * \frac{5}{5}=-\frac{10}{15}$
Since these
fractions have the
same denominator,
we can just subtract
${ }_{6}^{\text {the }}{ }^{10}{ }_{10}{ }^{15}$
$\overline{15}-\overline{15}=-\overline{15}$
13) $\frac{4}{6}-\frac{3}{6}$

Since these fractions have the same denominator, we can just subtract the numerators $\overline{6}-\overline{6}=\overline{6}$
14) $\frac{1}{8}-\frac{4}{8}$

Since these fractions have the same denominator, we can just subtract the numerators
$\frac{1}{8}-\overline{4}=-\overline{3}$
15) $\frac{6}{9}-\frac{4}{8}$

Since these
fractions have different
denominators, we need to find the least common
multiple of the
denominators
The least common multiple of 8 and 9 is 72 , so we need to multiply to make each of the
denominators $=72$
$\overline{9} * \overline{8}=\overline{72}$
$-\frac{4}{8} * \frac{9}{9}=-\frac{36}{72}$
Since these
fractions have the
same denominator, we can just subtract
$48 \quad$ the numerators
$\overline{72}-\overline{72}=\overline{72}$
$\overline{72}$ can be reduced,
since 12 is a factor
${ }_{12}$ foth 122_{12} and 72 :
$\overline{72} \div \overline{12}=\overline{6}$
The fraction is now in lowest terms
16) $\frac{5}{8}-\frac{3}{8}$

Since these fractions have the same denominator, we can just subtract
the numerators
$\overline{8}-\overline{8}=\overline{8}$
$\overline{8}$ can be reduced,
since 2 is a factor of
${ }_{2}$ both 2 and 8 :
$\overline{8} \div \overline{2}=\overline{4}$
The fraction is now in lowest terms

